Characterization of fiber distribution in steel fiber reinforced cementitious composites with low water-binder ratio
نویسندگان
چکیده
Image analysis technique is introduced to characterize fiber distribution in steel fiber reinforced cementitious composites. Through cutting and polishing of specimen, image acquisition of specimen surface, extraction of fiber feature, and measurement of related fiber parameters, i.e., dispersion coefficient and orientation factor, are given to quantitatively analyze fiber distribution. Effects of specimen size, fiber volume fraction and aggregate characteristics on fiber distribution are discussed. Results show that the dispersion coefficient increases with the increase of specimen size and with the decrease of fiber volume fraction and aggregate size, but the changes are small. The orientation factor of fiber is affected by boundary effect, while the influence will get smaller and smaller with the increase of specimen size, especially for the specimen size larger than 50 mm. With the increase of fiber volume fraction, the orientation factor in each direction deviates from 0.5, and the orientation factor in y-direction decreases. Aggregate characteristics have a significant effect on fiber distribution, with the increase of aggregate size, the orientation factors in xand ydirections increases, while that in z-direction decreases. With the increase of aggregate content, the orientation factors in yand z-directions increase, while that in x-direction decreases.
منابع مشابه
The Elastic Modulus of Steel Fiber Reinforced Concrete (SFRC) with Random Distribution of Aggregate and Fiber
The present paper offers a meso-scale numerical model to investigate the effects of random distribution of aggregate particles and steel fibers on the elastic modulus of Steel Fiber Reinforced Concrete (SFRC). Meso-scale model distinctively models coarse aggregate, cementitious mortar, and Interfacial Transition Zone (ITZ) between aggregate, mortar, and steel fibers with their respective materi...
متن کاملStudy on Mechanical Properties and Constitutive Equation of Hybrid Fiber Reinforced Cementitious Composites Under Static Loading
Abstract: The Quasi-static mechanical properties of hybrid fiber (steel fiber and Polyvinyl alcohol (PVA) fiber) reinforced cementitious composites (HFRCC(SP)) were investigated by compressive and tensile experiments. The compressive strength, peak strain, elastic modulus and tensile strength are studied as compared with that of engineered cementitious composite (ECC). Study results indicate th...
متن کاملFlexural Behavior of Cementitious Composites Reinforced by Synthetic Fibers
The application of fibers to reinforce cementitious materials is a well-known subject. At first, asbestos fibers are used in industrial process to produce fiber reinforced cement sheets. Thereafter, various types of synthetic fibers are produced and used as asbestos substitutes. The aim of the present work is to evaluate the effect of synthetic fibers on the flexural behavior of cementitious co...
متن کاملComparison of Two Computational Microstructure Models for Predicting Effective Transverse Elastic Properties of Unidirectional Fiber Reinforced Composites
Characterization of properties of composites has attracted a great deal of attention towards exploring their applications in engineering. The purpose of this work is to study the difference of two computational microstructure models which are widely used for determining effective transverse elastic properties of unidirectional fiber reinforced composites. The first model based on the classic me...
متن کاملSelf-Healing Capability of Fiber-Reinforced Cementitious Composites for Recovery of Watertightness and Mechanical Properties
Various types of fiber reinforced cementitious composites (FRCCs) were experimentally studied to evaluate their self-healing capabilities regarding their watertightness and mechanical properties. Cracks were induced in the FRCC specimens during a tensile loading test, and the specimens were then immersed in static water for self-healing. By water permeability and reloading tests, it was determi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012